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1. Infinite Dimensional Dynamical Systems: Exponential Attractors

The basic property of dissipative Partial Differential Equations (P.D.E.'s) is that their

global asymptotic behavior is controlled by a finite number of parameters. A global attractor

X exists, which is the largest compact set both positively and negatively invariant under the

flow, and uniformly attracting all bounded sets in the phase space and is unique. One of.

the properties that makes the attractors an important object to study is the fact that often

they have finite dimension.

Since the attractor is finite dimensional, it is natural to expect that it can be recovered

by solving a large enough system of ODE's, that is, the solutions on the attractor satisfy a

system of ODE's. An indirect way of obtaining such a system is to imbed the attractor into

a finite dimensional smooth manifold. An inertial manifold is an exponentially attracting,

finite dimensional, Lipschitz manifold that is invariant under the forward flow.

Fundamentally, we do not know the optimal rate of convergence for the trajectories of

a dissipative PDE to its global attractor X. It need not be exponential; and we cannot yet

construct a true inertial manifold for the Navier Stokes equations. We can still address the

following problem: what is the smallest compact set which is forward invariant under the

flow and which attracts at a uniform exponential rate all bounded trajectories? Can one

define a generalized (i.e., with noncontinuous coefficients) system of ODE's on such a set?

A. Eden, B. Nicolaenko and collaborators have (partially) resolved these questions through

construction of Inertial Sets [10]; an Inertial Set (also called Global Exponential Attractor):

1) is compact and forward invariant under the flow; hence it contains the attractor X;

2) has a finite fractal dimension

3) it attracts at a uniform exponential rate all trajectories which start in a bounded

initial ball.

We have constructed such sets for 2-D Navier Stokes equations (periodic boundary condi-

tions), damped hyperbolic systems (Sine-Gordon, Klein-Gordon [11], Compressible Van der

Waals gases with Korteweg capillarity phase change models [12]) and many other dissipative
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equations. Like inertial manifolds, inertial sets are not unique.

Inertial sets possess a deeper and more practical property: they remain more robust

under perturbations and numerical approzimations than global attractors. We elaborate

on this point, since the literature sometimes gives the wrong impression that attractors are

robust under perturbations. One can only establish upper-semi-continuity of attractors for

approximations of semigroups and partial differential equations. Specifically, if X, is the

approximation to the attractor X, and the functional space is equipped with a norm I -:

max {min Iz - ai} ez4EXe f eX I

that is, there exists a spherical e-neighborhood of X which contains the approximate Xe.

The reverse is not true. Similar problems plague the many constructions of approximate

inertial manifolds: these are in the vicinity of the exact attractor only in the sense of upper-

semicontinuity. Whereas, we prove, at least for classical Galerkin approximations, denoting

by X and M the exact global attractor and inertial set; by Xe and Me the approximate

ones:

mem I I c~

(that is, the exact attractor X is within an e-spherical neighborhood of the approximate

inertial set Me). Moreover:

aEx, min, u -u, <

(that is, the appiocmate attractor Xe is within an c-spherical neighborhood of the exact

inertial set M). Essentially, we also prove that approximate and exact inertial sets are

continuous with respect to the Hausdorff distance, modulo a time-shift (e-dependent), at

least for classical Galerkin approximations [10].

For inertially stable (in a sense to be detailed at the end of this section) numerical

schemes, computed trajectories lie on approximate inertial sets. What We effectivelt measure

or compute are trajectories on inertial sets, The latter contain the slow transients as well as
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the global attractor. In the theory of dynamical systems, the slow transients correspond to

slowly converging stable manifolds. Numerical simulations of infinite-dimensional dynamical

systems often capture both the slow transients and parts of the attractor. After a large but

finite time, the state of the system obtained from the numerical calculation may often be

at a finite distance from the global attractor but at an infinitesimal distance to the inertial

set. In this sense, we also call the inertial set an Exponential Attractor [10] to be consistent

with the physical intuition. Specifically, alter a short transient time the infinite-dimensional

system is arbitrarily close to an Exponential Attractor whenever the latter exists.

The intrinsic interest of the exponential attractor for N-S turbulence lies in the fact that

there is no natural single time scale for the N-S global attractor. In addition, the exponential

attractor allows for a study of large intermittent deviations at small scales. This phenomenon

of turbulent intermittency has been pre-excluded in the theory of inertial manifolds since,

in the latter, small scales are assumed to be globally slaved to large scales, which implies

no amplification of disturbances propagating towards small scales. Other time scales also

appear in the analysis of the equations that leads to the existence of exponential attractors;

these might or might not be related with the above mentioned scale. In this sense, the study

of exponential attractors might shed light to those physically observed and thus relevant

behaviors, no matter whether they are on the global attractor or not (10].

2. Coherent Structures in Physical Flows

Inertial sets are an appropriate tool for a deeper mathematical understanding of complex

spatio-temporal stiuctures in chaotic and turbulent flows. For Reynolds numbers (Re)

substantially beyond the first transitions to instability, to what extent does the random

occurrence of coherent large-scale events reflect intermittent dynamics on much lower

dimensional manifolds? Generally, a most intriguing problem in the theory of hydrodynamic

turbulence is the formation of large-scale structures in a flow performing random turbulent

motion at small scales. Such coherent structures (C.S.) and small scale turbulence may be
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viewed as the main features of a double structure: Although the C.S. are not especially

energetic nor long lived, they are important in transport of heat, mass and momentum.

Indeed, researchers realized that the C.S. (such as large eddies in turbulent shear flow) ought

to have quesi.deterministic beh4vior. Lower dimensional dynamical systems mechanics can

generate enhanced turbulent transport via the C.S.

We have extensively investigated 2D turbulent bursting flows which strikingly fit the

phenomenological C.S. picture outlined above. These are generalized Kolmogorov flows with

spatially periodic forcing [13]. Their (moderately) turbulent regimes are a paradigm for the

provocative statement by M. Lesieur:

"... coherent structures emerge from chaos, under the action of an external constraint."

Moreover, there is recent renewed interest in the actual experimental realization of these 2D

flows, via electric or magnetic fields. The classical two-dimensional Kolmogorov flow is the

solution of the 2D Navier-Stokes equation with a unidirectional force f = (,k' sin kfi, 0). It

was introduced by Kolmogorov in the late fifties as an example on which to study transition to

turbulence. For large enough viscosity, Y, the only stable flow is a plane parallel periodic shear

flow u0 = (ilkf sin kf y, 0), usually called the "basic Kolmogorov flow." The macroscopic

Reynolds number of the basic flow is easily found to be 1/V,; this will be used later as a free

parameter to define the bifurcation sequence. It was shown by Meshalkin and Sinai that

large-scale instabilities are present for Reynolds numbers exceeding a critical value, v2-. In

a 2fr-periodic box, the equations are:
au

-t +u-Vu+Vp=VV2 U+f, V-u=O,

f = (vks sin kfy, 0), 0 •< z, y _< 27r.

The most interesting transitions occur at even higher Reynolds number; they lead to sparsely

distributed bursts in time for a fairly large range of Reynolds number above a ce. sin

threshold, i.e., Re ft 20.8 for kf = 8 [13]. The most striking feature of this transition

is that the bursts generate substantial spatial disorder and drive developed turbulence. We
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have also investigated such bursting regimes in generAlized Kolmogorov flows, where the

force is an eigenfrnction of the linearized Stoke'j operator. For instance, a forcing stream

function of the type cos(kxz) cos(k/y) generates a basic flow of square eddies. Generally,

quiescent states associated to large scale coherent vortices dominate the dynamics between

the bursts. The burst corresponds first to weak, then to strong interactions between these

C.S., with turbulent dynamics at much smaller spatial scales. Cusped, near singular vortices

are sharply localized both in space and in time, during the bursts. As the Reynolds number

increases beyond 100, the same dynamical regime persists, with a striking role reversal:

"bursting" regimes now become prevalent (with homogeneous shear turbulence at smaller

scales) whereas the intermittencies now reflect brief reorganization of the flow around the

larger-scale, more symmetric coherent vortices: we have "bursts of reordering"; remarkably,

dynamics around the C.S. are now turbulent, not laminar (as for the lower Re). We have

established that symmetry-breaking mechanisms are the prime engine behind such persistent

(in Re) dynamics.

We establish both computationally and analytically that the Kolmogorov bursting

regimes are linked with symmetry-breaking heteroclinic connections which generate per-

sistent (in Re) homoclinic cycles 113]. The coherent vortices are invariant under isotropy

subgroups of symmetries of the Kolmogorov flow. The heteroclinic connections correspond

to invariant submanifolds with further reduced symmetries; they exchange the slow-stable

and unstable manifolds of the coherent vortices.

For the Kolmogorov flows, small-scale dynamics prevail in a neighborhood of the

heteroclinic connections, whereas large-scale dynamics are linked with slow-stable manifolds

of the hyperbolic Tori (C.S.). This is another paradigm of transient dynamics on an

inertial set. The ideal global attractor is made of the hyperbolic tori and their multiple

heteroclinic connections. Theoretical dynamics should get closer and closer to the ideal

geometric connections, and pseudo-periods between bursts should increase monotonically to
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infinity. This is not observed in practice, where bursts occur randomly, and (numerical)

noise throws the trajectories onto larger slow manifolds of the hyperbolic tori. So, for a very

long time, (computationally, forever) dynamics fluctuate within a tubular neighborhood of

the ideal geometric heteroclinic connections. These results might suggest slow transients on

an inertial set. Even more, for larger Reynolds numbers, the heteroclinic connections are

probably not strictly attracting (for t - +oo).

3. Proper Orthogonal Decomposition Methods

The Karhunen Loeve (K-L) analysis or Proper Orthogonal Decomposition has been

used for quite some time now to extract coherent structures out of PDE simulations and

experimental data [Lumley, Sirovich]. With support from this grant we have recently been

able to show that this method is also a suitable tool to extract phase-space information

out of large scale PDE simulations [1, 2]. In particular, we have analyzed large scale

simulations of the Kuramoto-Shivasinsky equation and of 2-d Kolmogorov flow. We find

that the method works especially well for an intermittent turbulent regime which shows

laminar or regular behavior for some time which then is interrupted by spatio-temporally

irregular burst phenomena. In this context, restricting the K-L analysis to the laminar data

will determine the metastable structures (stationary or time dependent), whereas the analysis

of the bursts may determine stable and unstable manifolds of these metastable states as well

as linear spanning dimensions for the chaotic transient that is involved. We can also analyze

periodic and quasi-periodic regimes deriving eigenfunctions that determine the dynamics

and structure of these (quasi-)periodic cases. These are very important data for any kind of

qualitative understanding of large scale spatio-temporally chaotic flows. It will facilitate the

development of low dimensional ODE models that approximate the large scale dynamics of

the flow. It helps to elucidate the role of symmetry and symmetric subspaces in these flows.

As part of his master thesis, our student, Randy Heiland, has developed a graphical

front end for the necessary calculations on an SGI machine which makes maximal use of
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its window and graphics capability and at the same time allows one to perform the very

computationally intensive work on a more suitable configuration. The resulting software

package that we call KL-TOOL can be called up from an ftp server. It was presented at

Dynamics Days '92, the Oberwolfach conference on "Dynamics and Bifurcation," the Metz

Days, and the Arizona Days in Los Alamos and attracted a lot of attention.

With the aid of this tool, we (D. Armbruster, P. Chossat, B. Nicolaenko) are currently

developing a low dimensional model for Kolmogorov flow that allows us to identify the

symmetries involved in the bursting regimes. In that way we hope to be able to rigorously

prove that bursting in Kolmogorov flow is generated by structurally stable heteroclinic orbits.

One of the major topics at Dynamics Days '92 was the analysis and characterization

of spatio-temporal complexity. This has so far not been successfully done for complex real

data. A major project that D. Armbruster and E. Stone are currently pursuing involves

the analysis of experimental data coming from the dynamics of flames. These data were

suppliedI by Michael Gorman and show spatially and temporally changing cellular flames. A

preliminary analysis on a small set of data was successful to identify a nontrivial temporally

periodic flame state. Currently we are minmicking those data with our own synthetic data

to test out ideas. We can show that the Karhunen Loeve analysis allows one to differentiate

dynamics on different spatial scales. Furthermore, we can extract characteristic numbers for

distinct spatio-temporal states which are closely related to Lyapunov exponents. This work

will be presented at the pattern formation workshop at the Fields Institute. Further studies

are underway which will use large quantities of data obtained by digitizing the videotape

that shows the spatio-temporal evolution of the flames.

4. Targeting in Low Dimensional Dynamical Systems

Eric Kostelich has developed a procedure to rapidly steer successive iterates of an initial

condition on a chaotic attractor to a small target region about any prespecified point on the

attractor using only small controlling perturbations [3]. Such a procedure is called targcting.
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Previous work on targeting for chaotic attractors has been in the context of one- and two-

dimensional maps. Kostelich has shown that targeting can also be done in higher dimensional

cases.

Ott et al. [4] introduced the idea that control of chaos could in some cases be attained by

feedback stabilization of one of the infinite number of unstable periodic orbits that naturally

occur in a chaotic attractor. Their method has been used to control a driven, flexible beam

about a saddle fixed point in a laboratory experiment whose dynamical behavior was well

approximated by a two dimensional map [5].

Romeiras et al. [6] recently extended these ideas and applied them to stabilize saddle

periodic points in an attractor in four dimensions arising from a map that describes a kicked

double rotor. They showed that control can be achieved (perhaps after several thousand

iterations) by using only one control parameter, even when the attractor has two positive

Lyapunov exponents (the Lyapunov dimension [7] of the attractor is 2.8).

Targeting is a slightly different version of the control problem for a chaotic system. We

assume that we are given some initial condition on the attractor, and we wish to rapidly direct

the resulting trajectory to a small region about some specified point on the chaotic attractor.

Because of the inherent exponential sensitivity of chaotic time evolutions to perturbations,

one expects that this can be accomplished using only small controlling adjustments of one

or more available system parameters.

This was demonstrated theoretically and in numerical experiments for the case of a two

dimensional map' by Shinbrot et al. 18] and also in a laboratory experiment for which the

dynamics were approximately describable by a one dimensional map [9]. The object of our

paper is to present a new method of targeting and to demonstrate its applicability in systems

of higher dimensionality than previously considered.

Grebogi, Ott and Yorke suggested the problem of how to apply a targeting type of

control in a higher dimensional system. In his work, Kostelich considered the double rotor
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map [3], which is four dimensional. Using the targeting procedure, typical points on the

double rotor attractor can be steered to within 10-4 of a given target point on the attractor

in an average of 35 iterations. Although there is more than one positive Lyapunov exponent,

the control is achieved by making successive changes to a single parameter (here the strength

of the kick).

Because the dimension of the double rotor attractor is about 2.8, the average distance

between nearest neighbors in a subset of N points on the attractor scales as N-1124. This

implies that about 1011 iterations of the map are required on the average to come within

10-4 of the target without the control. Since the control procedure described in [3] can

steer the initial condition to within 10-4 of the target in about 102 steps, the method gets

to the target about 109 times faster than the uncontrolled chaotic process. The method

is demonstrated with a mechanical system described by a four dimensional mapping whose

attractor has two positive Lyapunov exponents and a Lyapunov dimension of 2.8. The target

is reached by making very small successive changes in a single control parameter. In one

typical case, 35 iterates on average are required to reach a target region of diameter 10-4,

as compared to roughly 1011 iterates without the use of the targeting procedure.

The method works by setting up a Newton procedure to determine two successive small

changes to the kick to steer a given iterate to the stable manifold of a point leading to the

target. (A typical point z on the attractor has a stable manifold S associated with it. The

set is stable in the sense that IIF'(z) - F"(y)ll -, 0 as n -- oo whenever y E S.) The stable

manifold S is two :limensional for typical points z on the attractor because there are two

negative Lyapunov exponents associated with z, and the plane spanned by the Lyapunov

basis vectors associated with the negative exponents is tangent to S at z.

Although in principle it is possible to determine four successive changes to the kick to

steer the point x to a chosen target point near F4 (z), standard numerical methods do not

work well because small distances between points approximately triple on each iteration of
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the map (the largest Lyapunov exponent is about 1.2). Thus it is impossible to get a good

linearization unless the orbit to be targeted is already extremely close to the given iterate.

Instead, Kostelich developed a procedure to hit the stable manifold of a given attractor point

that is only two iterates down from the starting point x.

We are now evaluating ways in which this kind of higher dimensional targeting procedure

can be applied to other physical problems. For example, Kostelich's targeting procedure

might be applied to an initial point near some chaotic attractor in order to steer it near a

saddle fixed point. Then the methods of Grebogi, Ott and Yorke might be used to stabilize

the trajectory around the saddle orbit. The saddle orbits of interest would be those that

correspond to some desirable physical state; for instance, a laminar state in an otherwise

chaotic system.
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